

Лектор: Старший преподаватель, Кафедры молекулярной биологии и генетики, PhD, Смекенов И.Т. Предмет: Рекомбинация ДНК

(Лекция 3)

### **©** цель лекции

Ознакомить студентов с принципами и этапами создания рекомбинантных молекул ДНК.Изучить роль селективных и репортёрных генов в отборе трансформированных клеток.Сформировать понимание практического применения этих генов в генной инженерии и молекулярной биологии.

### *≴* ЗАДАЧИ

- ✓ Изучить основные методы получения рекомбинантных ДНК (рестрикционно-лигазный, гибридизационный, ПЦР-ориентированный и др.).
- ✓ Ознакомиться с ролью векторов (плазмид, фагов, вирусов, космид, ВАС, YAC) при создании рекомбинантных конструкций.
- ✓ Рассмотреть функции селективных генов (гены устойчивости к антибиотикам) и репортёрных генов (например, lacZ, GFP, luciferase).
- ✓ Научиться анализировать схему клонирования гена и принципы отбора трансформантов.

### **Я** Ключевые термины

рекомбинантная ДНК, рестриктазы, лигазы, вектор, плазмида, трансформация, селективный ген, репортёрный ген, маркер, GFP, lacZ, luciferase, ампициллинрезистентность, генная инженерия.

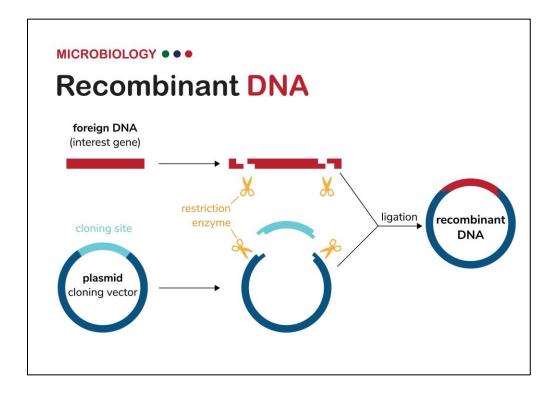
## **©** ТЕЗИС

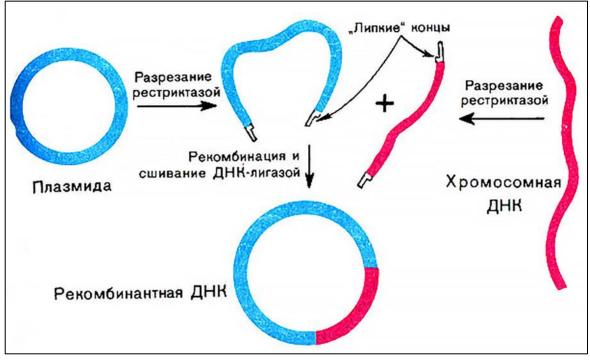
1. Конструирование рекомбинантных молекул ДНК — это процесс искусственного соединения фрагментов ДНК из разных источников для получения новой генетической комбинации.

Основной принцип заключается в разрезании ДНК рестриктазами и сшивании фрагментов с помощью ДНК-лигазы.

- 2. Основные этапы создания рекомбинантной ДНК:
  - ✓ выделение гена-мишени;
  - ✓ выбор и подготовка вектора (обычно плазмиды);
  - ✓ разрезание ДНК вектора и вставляемого фрагмента одинаковыми рестриктазами;
  - ✓ лигирование фрагментов;
  - ✓ трансформация клеток-хозяев;
  - ✓ отбор клеток, содержащих рекомбинантную ДНК.
- 3. Селективные гены это гены, обеспечивающие выживание клеток, содержащих вектор, на селективных средах. Примеры:
  - ❖ amp<sup>R</sup> устойчивость к ампициллину,
  - ❖ kan<sup>R</sup> устойчивость к канамицину,
  - $\bullet$  tet<sup>R</sup> устойчивость к тетрациклину.
- 4. Репортёрные гены гены, кодирующие белки, по активности которых можно судить о работе промотора или успешной экспрессии конструкции.

lacZ (β-галактозидаза, синее окрашивание с X-gal),


- GFP (зелёный флуоресцентный белок),
- luc (люцифераза, свечение).
- 5. Значение селективных и репортёрных генов:
  - I. позволяют быстро идентифицировать успешные трансформанты;
  - II. служат индикаторами экспрессии;
  - III. применяются в клеточных и in vivo исследованиях активности генов.


# **©** ОСНОВНЫЕ ВОПРОСЫ

- 1) Что представляет собой рекомбинантная ДНК и как она создаётся?
- 2) Какие ферменты участвуют в процессе клонирования и какова их функция?
- 3) Какие типы векторов используются для создания рекомбинантных молекул ДНК?
- 4) В чём различие между селективными и репортёрными генами?
- 5) Как осуществляется отбор клеток, содержащих рекомбинантные плазмиды?
- 6) Почему гены lacZ и GFP широко применяются в молекулярной биологии?
- 7) Какую роль играют репортёрные гены при исследовании активности промоторов?

# Основы генной инженерии: От идеи к клону

• Рекомбинантная ДНК (рДНК) — это молекула ДНК, созданная *in vitro* путем объединения генетического материала из двух или более разных источников.





# Инструменты Конструирования рДНК

# • КОНСТРУИРОВАНИЕ РДНК ТРЕБУЕТ ТРЕХ ОСНОВНЫХ КОМПОНЕНТОВ:

**1) Донорская ДНК (Целевой ген)** - Фрагмент ДНК, содержащий ген, который мы хотим клонировать, экспрессировать или исследовать (например, ген инсулина).

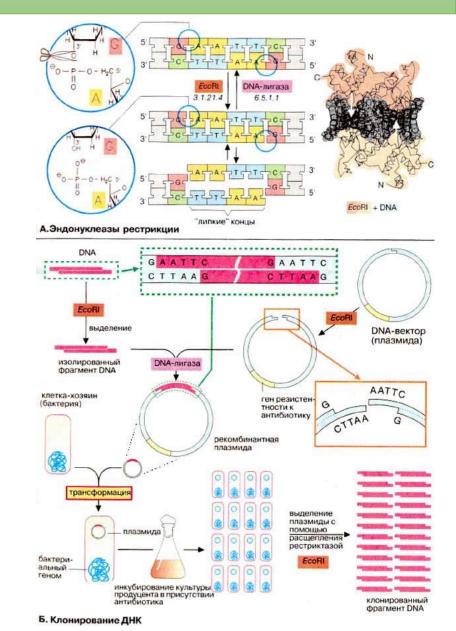
### Как получить:

Выделение из генома.

Синтез in vitro (химический синтез).

Амплификация (умножение) с помощью ПЦР (Полимеразная цепная реакция).

**2) Вектор (Транспортное средство) -** Самореплицирующаяся молекула ДНК (обычно плазмида или вирус), которая может переносить целевой ген в клеткухозяина.

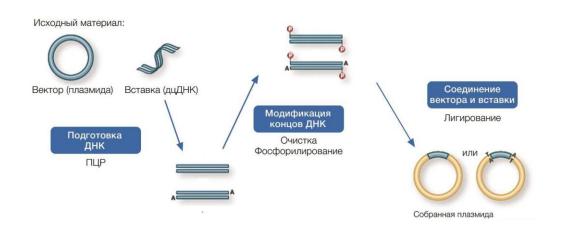

### Основные требования:

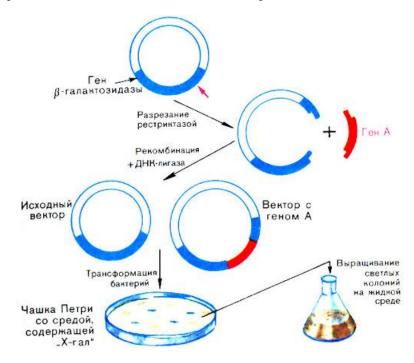
Наличие точки начала репликации (ori).

Наличие маркера селекции (например, устойчивость к антибиотику).

Наличие сайта для встраивания (МСS) – множественные сайты для рестрикции.

3) Ферменты ("Молекулярные ножницы и клей") - Рестриктазы (Рестрикционные эндонуклеазы): «Ножницы», которые разрезают ДНК в специфических последовательностях, создавая «липкие» или тупые концы; ДНК-лигаза: «Клей», который сшивает (лигирует) фрагменты ДНК (целевой ген и вектор).





## Основной Классический Метод – Рестрикция и Лигирование

### Шаг 1: Рестрикционное расщепление

И донорская ДНК (целевой ген), и вектор обрабатываются одними и теми же рестрикционными ферментами.

**Результат:** Образуются совместимые (комплементарные) концы (чаще всего "липкие" концы), которые облегчают последующее соединение.

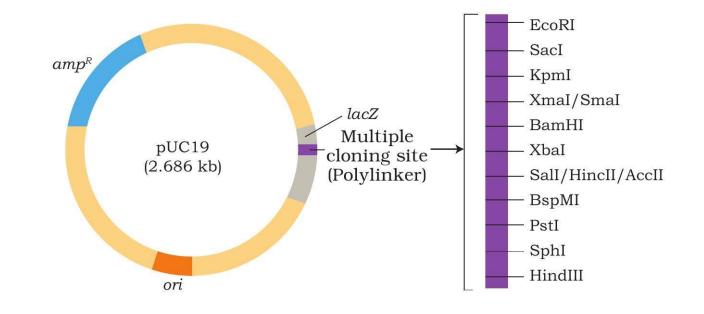


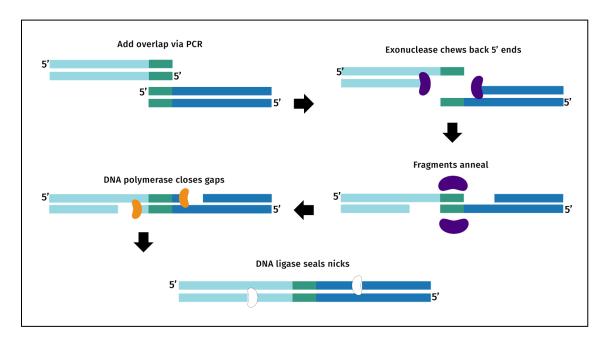


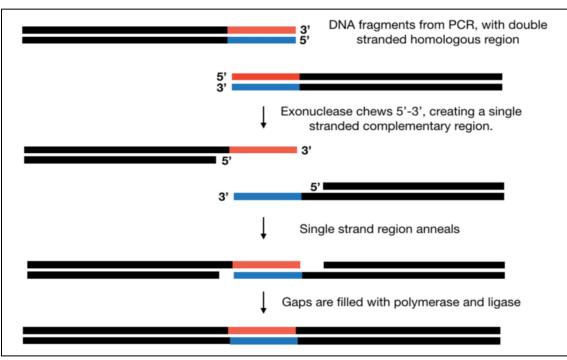
### Шаг 2: Лигирование (Сшивание)

**Смешивание:** Фрагменты целевого гена смешиваются с разрезанным вектором.

**Действие:** Фермент ДНК-лигаза восстанавливает фосфодиэфирные связи между концами вектора и целевого гена.


**Результат:** Формирование ковалентно замкнутой кольцевой рекомбинантной плазмиды.


# Альтернативные и Современные Методы (Безлигазное Клонирование)


Классический метод рестрикции/лигирования имеет ограничения (необходимость наличия уникальных сайтов рестрикции). Современная генетика использует более гибкие методы:

# 1. Направленное Клонирование (Directional Cloning)

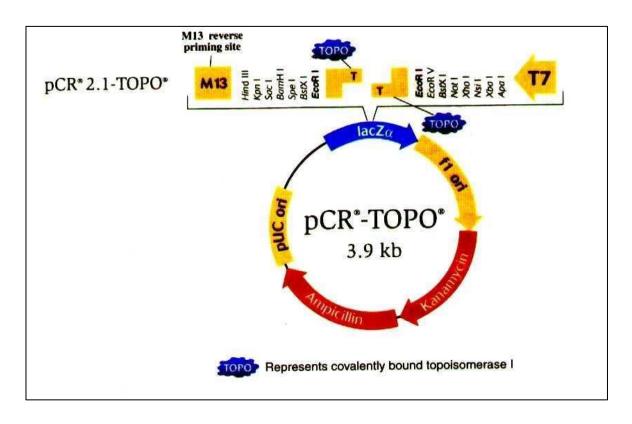
- Использование **двух разных рестриктаз** на концах гена и вектора.
- Это гарантирует встраивание гена в вектор **в правильной ориентации** и предотвращает самозамыкание вектора.

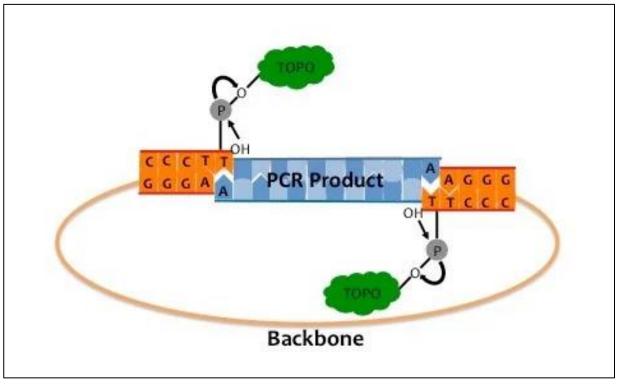






# 2. Клонирование на основе гомологичной рекомбинации (In-Fusion, Gibson Assembly)


**Принцип:** Используется способность ДНК к естественной рекомбинации.

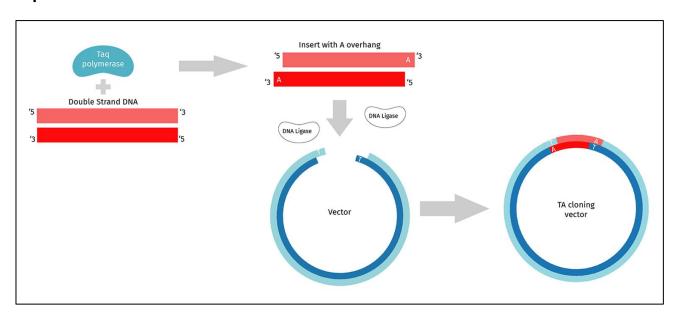

Метод Гибсона (Gibson Assembly): Позволяет одновременно соединять несколько фрагментов ДНК в одну реакцию. Используются фрагменты с короткими гомологичными концами, которые "слипаются" и затем восстанавливаются ферментами.

### 3. ТОПО-клонирование (TOPO Cloning)

**Принцип:** Использование фермента **ДНК-топоизомеразы I**, который может быстро и эффективно присоединять и лигировать фрагменты ДНК без использования лигазы.

**Преимущество:** Чрезвычайно быстрый метод, идеален для встраивания ПЦР-продуктов.






### 4. ТА-клонирование

**ТА-клонирование** — это **метод молекулярного клонирования**, основанный на соединении **ДНК-фрагмента с А-концами** (адениновыми) и **вектора с Т-концами** (тиминовыми) без использования рестриктаз.

### Принцип метода:

- **1.Во время амплификации ДНК при помощи Таqполимеразы** (или другой ДНК-полимеразы без корректорной активности)
- $\rightarrow$  на 3'-концах амплифицированной ДНК добавляются **одиночные адениновые остатки (A-overhangs)**.
- **2.ТА-вектор** (обычно производный плазмиды pGEM-T, pCR, pTZ и др.)
- $\rightarrow$  предварительно содержит **тиминовые остатки** (**T-overhangs**) на своих 3'-концах.
- 3.При смешивании фрагмента и вектора
- → A и T комплементарно соединяются посредством водородных связей,
- → затем **ДНК-лигаза** ковалентно закрепляет соединение, формируя **рекомбинантную молекулу**.





Селективные гены, или селекционные маркеры, — это гены, вводимые в организм-хозяин, чтобы помочь отличить клетки, успешно воспринявшие генетическую конструкцию (например, плазмиду), от тех, которые этого не сделали.

Эти гены часто обеспечивают устойчивость к антибиотикам или другим токсичным соединениям.

### Общие характеристики:

**Функция:** Селективный ген позволяет выживать и расти в присутствии селективного агента только тем клеткам, в которые он успешно встроился.



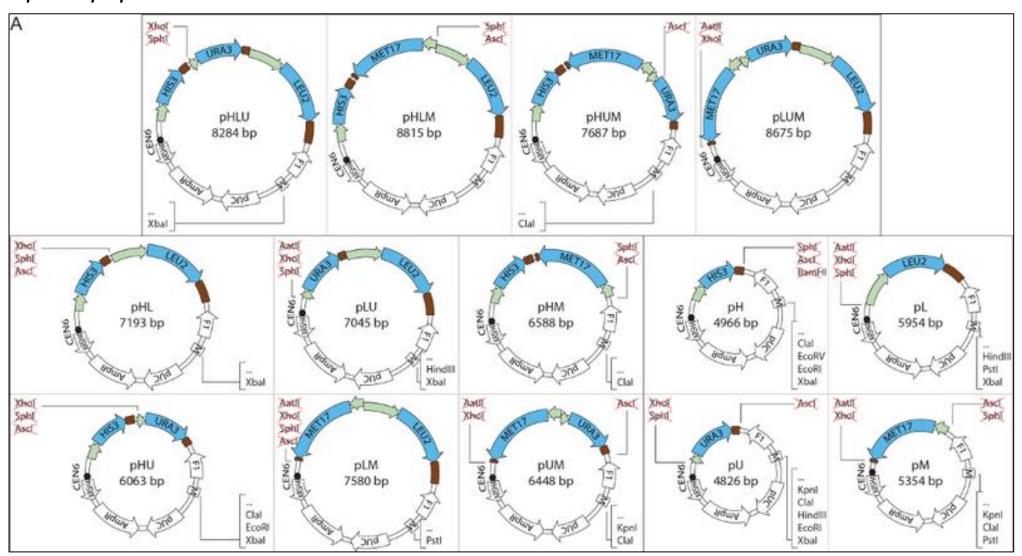
Genetic Engineering

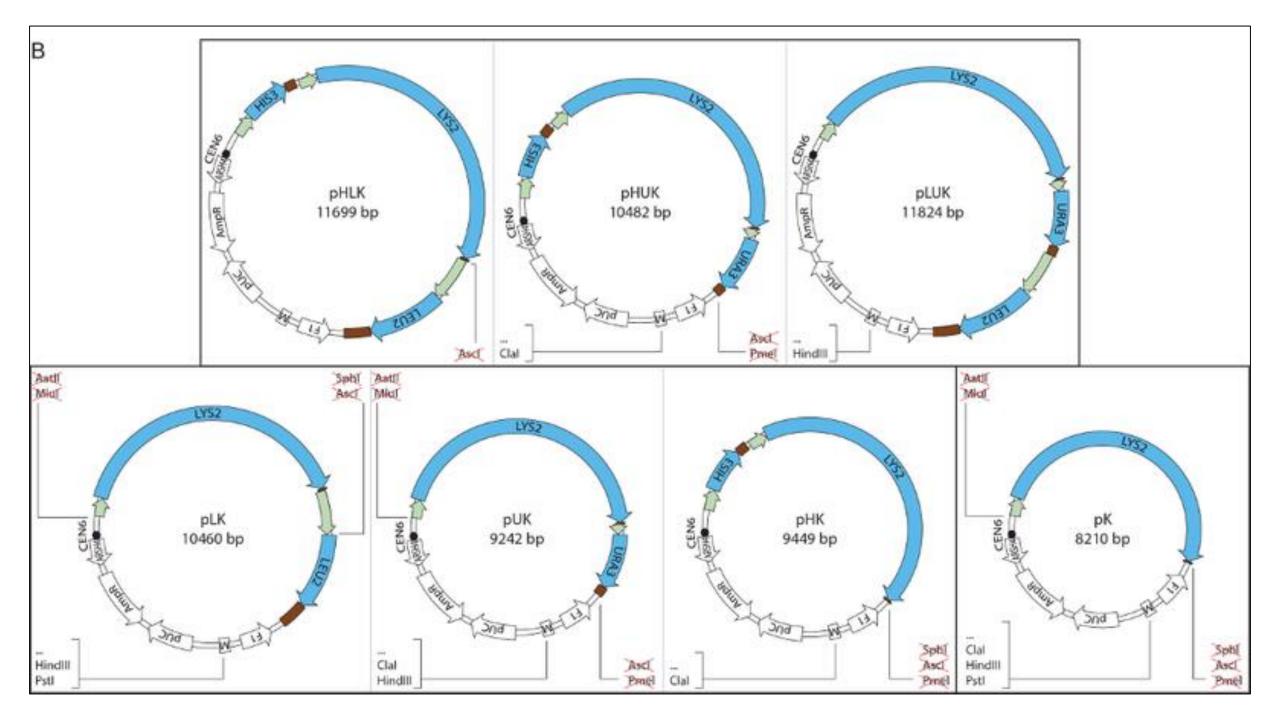
# Можно выделить 2 группы генов-маркеров, которые позволяют различать трансформированные клетки (типы селективных маркеров):

## 1. Селективные гены, ответственные за устойчивость к антибиотикам.

Обеспечивают устойчивость к таким антибиотикам, как ампициллин, канамицин или тетрациклин. Эти антибиотики добавляются в питательную среду, и выживают только трансформированные клетки с геном устойчивости.

У бактерий: канамицин, тетрациклин, ампициллин, неомицин и т. д.

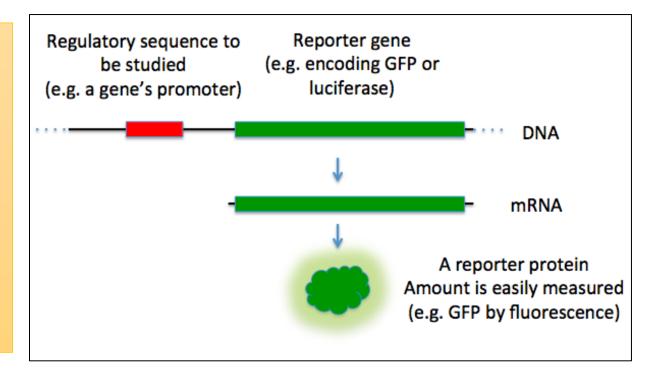

У растений: гербициды и гены, представленные в таблице.


### 2. Пищевые маркеры (ауксотрофия).

Эти гены, часто используемые в дрожжах и бактериях, позволяют клеткам расти в средах, не содержащих определённые питательные вещества (например, гистидин, лейцин).

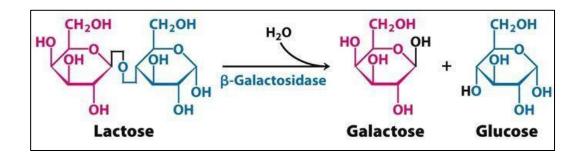
| Sl. no. | Substrates  | Marker genes                                            | Enzyme produced                                                                          |
|---------|-------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1.      | Antibiotics | Bleomycin                                               | Gene ble (unknown enzyme)                                                                |
|         |             | G418, Kanamycin,<br>Neomycin                            | Neomycin phosphotransferese (nptll)                                                      |
|         |             | Gentamycin                                              | Gentamycin acetyl transferase (gat)                                                      |
|         |             | Hygromycin B                                            | Hygromycin phosphotransferase (hpt)                                                      |
|         |             | Methotrexate trimethoprim                               | Dihydrofoate reductase (dfr)                                                             |
|         |             | Streptomycin                                            | Streptomycin phosphotransferase (spt)                                                    |
| 2.      | Herbicides  | Chlorosulfuron imidazolinones                           | Mutant form of acetolactase synthase (als)                                               |
|         |             | Bromoxynil<br>Glyphosate                                | Bromoxynil nitrilase (bnl) 5-enolpyruvate shikimate-3 - phosphate (EPSP)-synthase (aroA) |
|         |             | PPT (L-phosphino-<br>thricin, also called<br>bialaphos) | Phosphinothricin acetyltransferase (bar)                                                 |

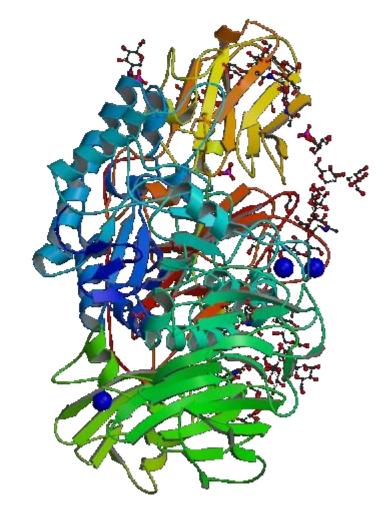
Основной принцип действия такого маркера заключается в способности трансформированных клеток расти на селективной питательной среде с добавлением определенных веществ, подавляющих рост и деление нетрансформированных, нормальных клеток, или в отборе мутантных трансформантов.

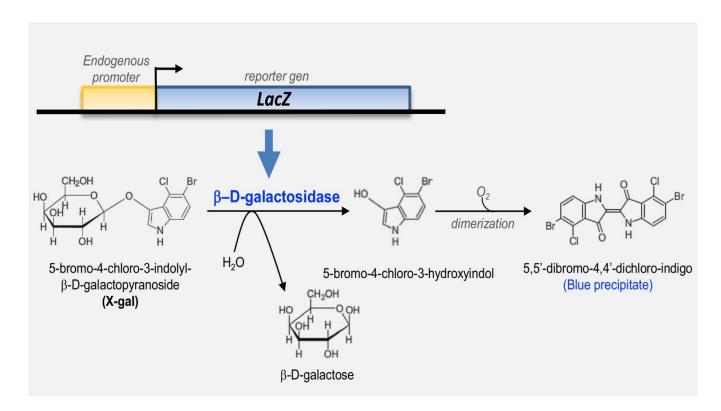





# **РЕПОРТЕРНЫЕ ГЕНЫ,** кодирующие нейтральные для клеток белки, присутствие которых в тканях можно легко проверить.


• Наиболее часто используемые репортерные гены — это β-глюкуронидаза (**GUS**), зелёный флуоресцентный белок (**GFP**), люцифераза (**LUC**) и хлорамфениколацетилтрансфераза (**CAT**).На сегодняшний день наиболее часто используемыми генами из этого арсенала являются **GUS** и **GFP**, а также, в меньшей степени, **LUC** и **CAT**.


- ✓ Репортерные гены кодируют белки, обладающие уникальной ферментативной активностью, и используются для оценки транскрипционных свойств элементов ДНК.
- ✓ Использование репортерных генов в трансгенных животных обеспечивает быстрый метод обнаружения экспрессии трансгена, которую можно легко отличить от экспрессии соответствующего эндогенного гена животного.

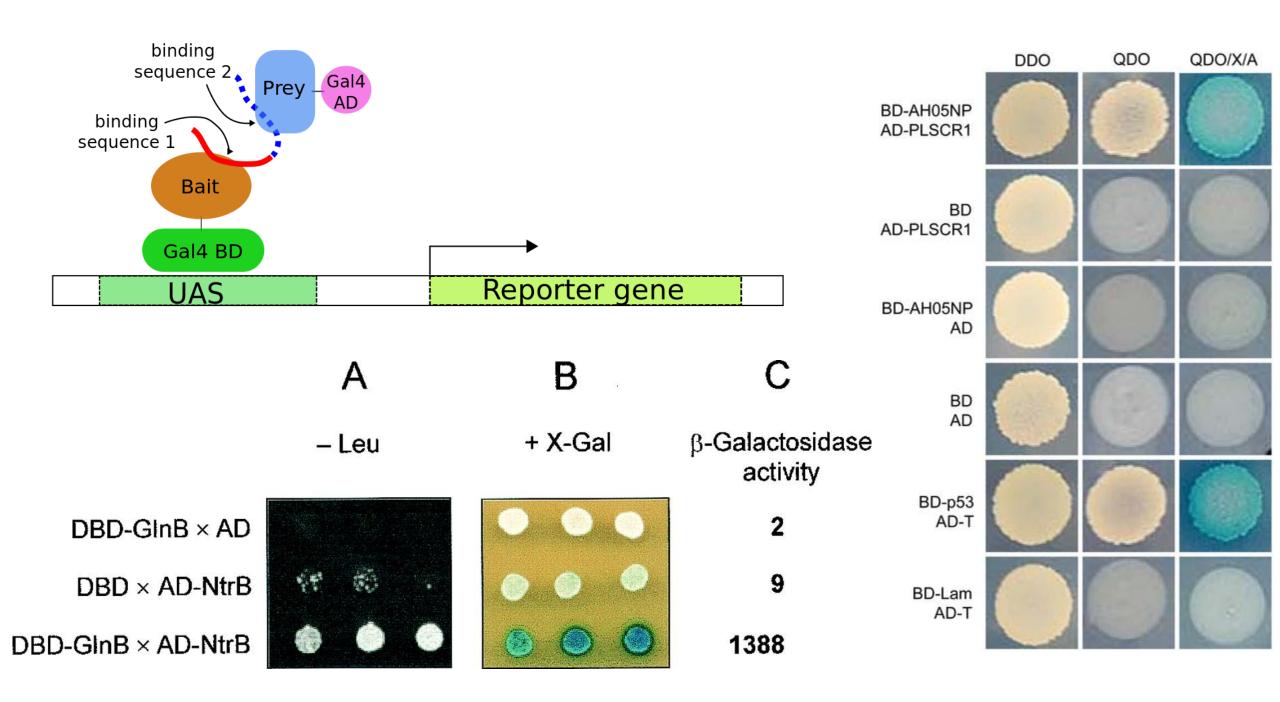



# β-галактозидаза

- Фермент **β-галактозидаза**, катализирующий гидролиз β-галактозидов, включая лактозу, кодируется геном **LacZ** E. coli.
- Активность фермента измеряется с помощью простого фотометрического метода, измеряющего гидролиз субстрата онитрофенил-Р-о-галактопиранозида (ONPG) β-галактозидазой в бесклеточных экстрактах.
- Активность β-галактозидазы также можно контролировать гистохимически, используя субстрат X-Gal (5-бром-4-хлор-3-индоил β-D-галактозид).
- □ Потенциальным недостатком использования β-галактозидазы в качестве репортерного фермента является наличие эндогенной β-галактозидазной активности в некоторых тканях млекопитающих, включая мозг. Однако оптимальный рН для этого фермента низкий (рН 3,5), тогда как для фермента E. coli он составляет 7,3. Ложноположительные результаты можно свести к минимуму, проводя анализ при рН 7,5 и используя экстракт нормальной ткани в качестве контроля.



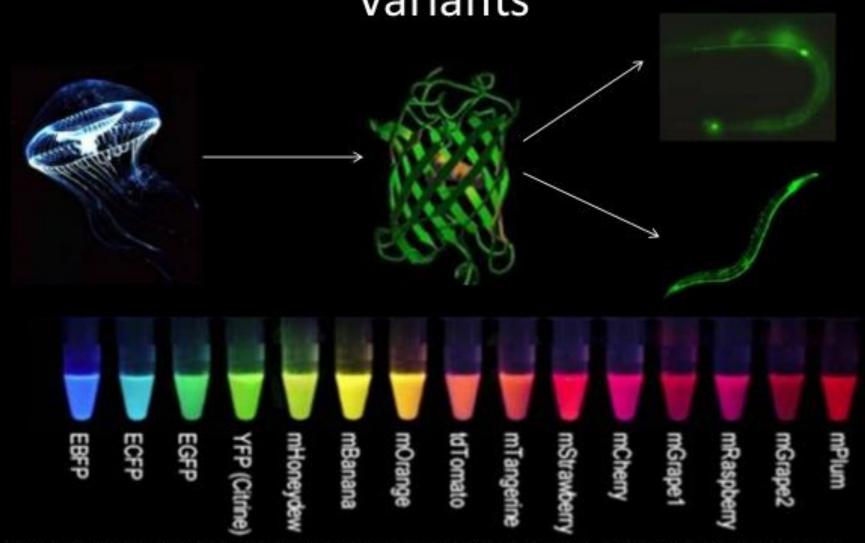




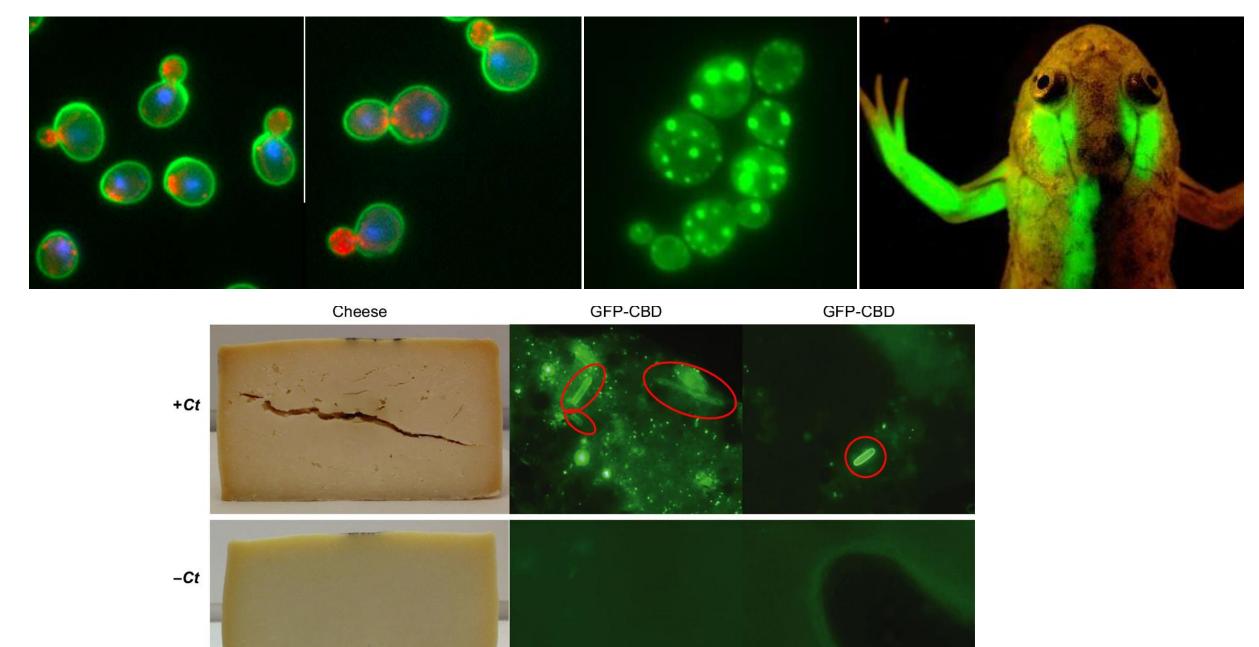



• Технологии генной инженерии позволяют создавать генетические химеры между промоторной областью интересующего гена и репортерным геном в качестве средства изучения регуляции экспрессии эукариотических генов на уровне транскрипции.

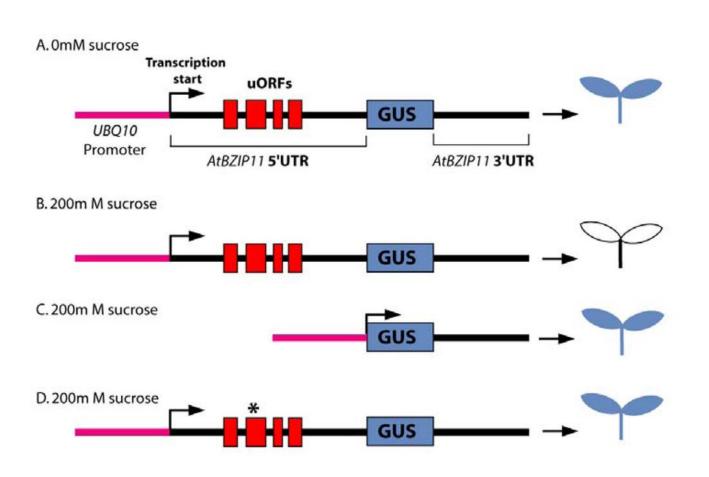
# Хороший продукт гена-репортера имеет следующие характеристики:


- а) ферментативная активность термостабильна и устойчива к протеазам, а также хорошо соответствует силе промотора;
- b) фоновая и/или мешающая ферментативная активность в клетках отсутствует;
- с) доступны простые, чувствительные, воспроизводимые и удобные ферментативные или иммуноферментные анализы продукта репортерного гена для оценки активности промотора.




- Зеленый флуоресцентный белок (GFP) был открыт Шимомурой и соавторами в 1962 году у светящейся медузы Aequorea victoria.
- Ген GFP был клонирован в **1992 году** Прашером и соавторами, и через несколько лет этот ген начал активно использоваться в качестве репортерного гена в исследованиях с участием самых разных про- и эукариотических организмов.
- В настоящее время ген GFP используется в сотнях исследований по всему миру, и их число стремительно растёт. Этот стремительный рост обусловлен особыми свойствами белка GFP, а именно его способностью флуоресцировать в видимой (зелёной) области спектра при облучении длинноволновым УФ-излучением. Эта флуоресценция вызывается непосредственно самим белком и не требует субстратов или кофакторов для своего проявления.
- Благодаря этому свойству ген GFP является весьма перспективным репортерным геном, позволяющим проводить разнообразные прижизненные (неразрушающие) исследования с трансгенными организмами. Другой белок, **DsRed**, который флуоресцирует в красном свете, недавно был выделен из актинии **Discosoma sp.**




# The Green Fluorescent Protein and Variants




life.bio.sunysb.edu; brainwindows.wordpress.com; Chalfie et al., 1994; bcgsc.ca; Zimmer, 2009

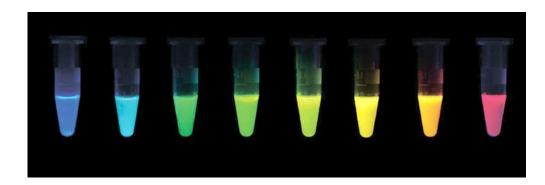


- Используемый в настоящее время как **репортерный ген GUS** является модифицированным геном из Escherichia coli, кодирующим β-глюкуронидазу с молекулярной массой 68 кД.
- GUS активен в широком диапазоне условий среды с оптимумом при рН 5-8 и 37°С. Он может гидролизовать обширный спектр природных и синтетических глюкуронидов, что позволяет подбирать соответствующие субстраты для спектрофотометрического или флюориметрического определения активности фермента, а также для гистохимического окрашивания тканей *in situ* (например, в синий цвет).
- В живых клетках белок GUS также весьма стабилен и активен от нескольких часов до нескольких суток.





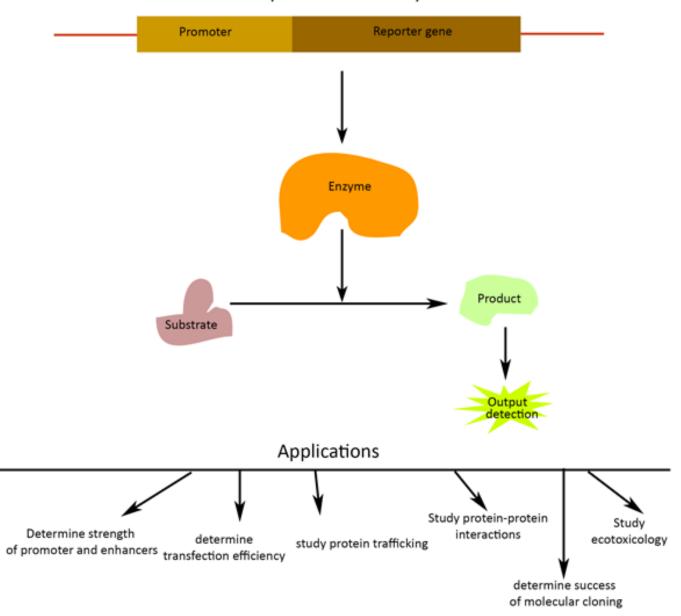
# Активность фермента определяется по поглощению, флуоресценции или хемилюминесценции.


### Флуориметрический

Флуоресценция — это процесс, когда молекула испускает свет одной длины волны после поглощения света другой длины волны. Флуориметрические анализы используют разницу в флуоресценции субстрата и продукта для измерения ферментативной реакции. Эти анализы, как правило, гораздо более чувствительны, чем спектрофотометрические, но могут быть подвержены помехам из-за примесей и нестабильности многих флуоресцентных соединений под воздействием света.

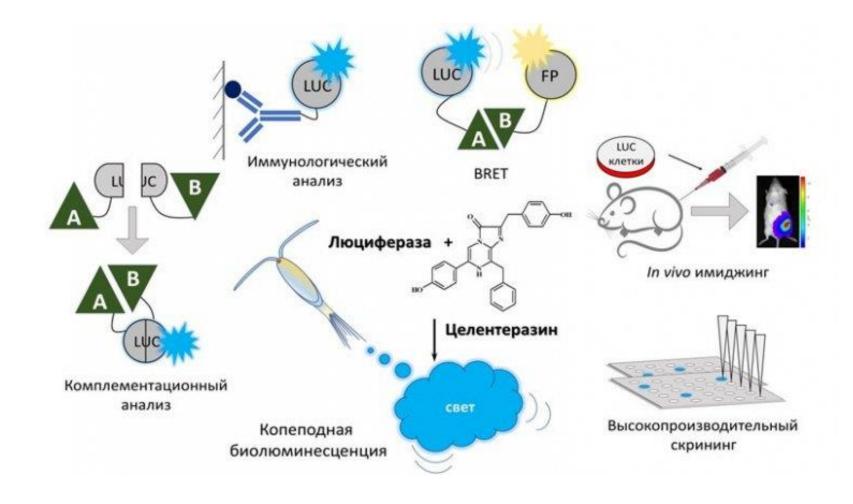
### Хемилюминесценция

**Хемилюминесценция** — это испускание света в результате химической реакции. Некоторые ферментативные реакции генерируют свет, который можно измерить для обнаружения образования продукта. Эти типы анализов могут быть чрезвычайно чувствительными, поскольку испускаемый свет может фиксироваться фотоплёнкой в течение нескольких дней или недель, но их трудно количественно оценить, поскольку не весь свет, испускаемый реакцией, будет обнаружен.

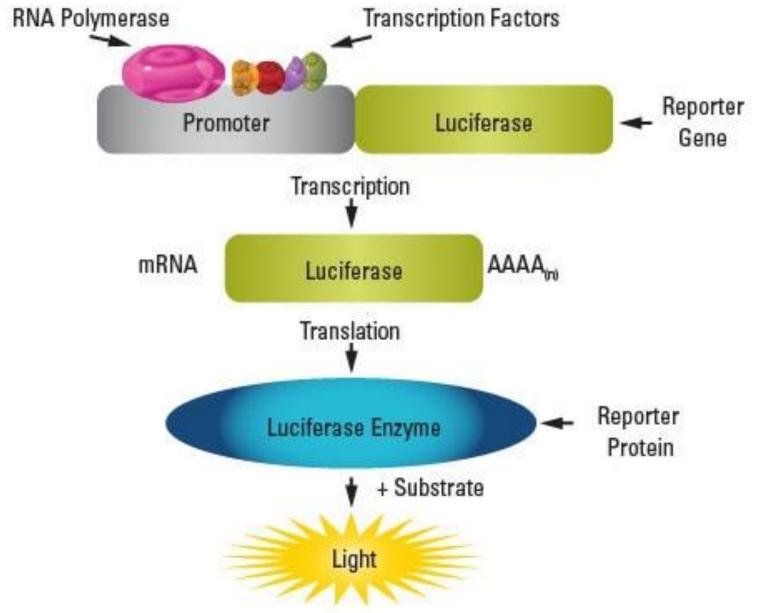

## Флуоресценция



### Хемилюминесценция




### Reporter Gene Assay

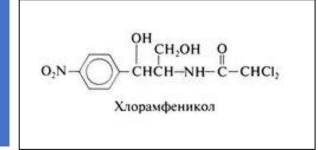


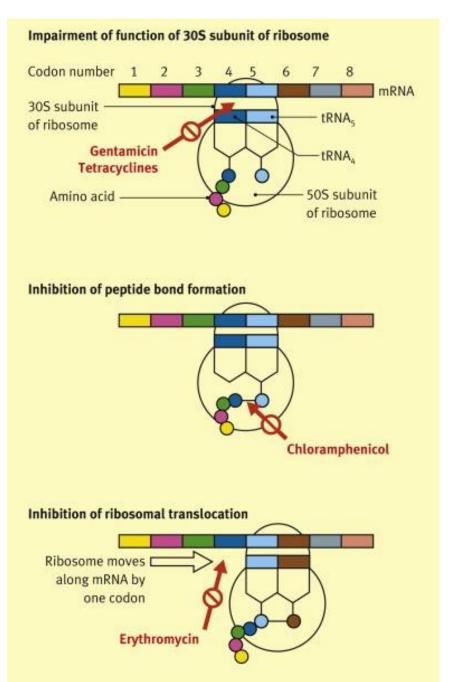

### Биолюминесцентные репортерные зонды для визуализации

- В последнее время появились новые методы визуализации, использующие биолюминесцентный белок светлячков **люциферазу**.
- Главное преимущество использования биолюминесцентных репортёров их высокая чувствительность в сочетании с минимальным фоном.



Схемы и основные области аналитического применения копеподных люцифераз: высокопроизводительный скрининг различных веществ, биолюминесцентный иммунологический анализ, биолюминесцентный имиджинг мелких животных in vivo после введения субстрата, детекция белок-белковых взаимодействий комплементационным анализом и методом безызлучательного резонансного переноса энергии (BRET). При комплементационном анализе неактивные фрагменты люциферазы, способные восстанавливать активность при пространственном сближении, присоединяются к различным белкам А и Б, их взаимодействии приводит к восстановлению активности люциферазы. В случае BRET, к исследуемым белкам присоединяют люциферазу и флуоресцентный белок (ФБ) — далее при взаимодействии белков А и Б люцифераза сближается с ФБ, который становится способным переизлучать ее свет, но с большей длиной волны, что влечет изменение цвета биолюминесценции. Информация взята с портала «Научная Россия»





Light Signal = Luciferase Expression = Promoter Activity

## Хлорамфеникол-ацетилтрансфераза

• Хлорамфеникол-ацетилтрансфераза (CAT, chloramphenicol acetyltransferase) — один из классических репортерных ферментов, широко используемых в молекулярной биологии для оценки активности промоторов и регуляторных элементов ДНК.

🕰 Как работает САТ-репортер Фермент САТ катализирует ацетилирование антибиотика хлорамфеникола, делая его неактивным. В присутствии ацетил-СоА фермент переносит ацетильную группу на молекулу хлорамфеникола. Уровень ацетилирования прямо пропорционален количеству фермента, а значит — силе экспрессии исследуемого гена/промотора.





### ЛИТЕРАТУРА

- 1. http://www.biotechnolog.ru/ge/ge3\_1.htm
- 2. Щелкунов С.Н. «Генетическая инженерия», Учебно-справочное пособие. 3-е изд. Новосибирск: СУИ, 2008 514 с
- 3. Жимулев И.Ф. «Общая и молекулярная генетика» учебное пособие. Новосибирск: СУИ, 2007.
- 4. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory Press, 2001, NY.
- 5. Маниатис Т., Фрих Э., Сэмбрук Д. Молекулярное клонирование. М.: Мир, 1984.
- 6. Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. 4th edition. Cold Spring Harbor Laboratory Press, 2012.
- 7. Lodish H., Berk A., Zipursky S.L. Molecular Cell Biology. 9th edition. W.H. Freeman, 2021.
- 8. Ausubel F.M. et al. Current Protocols in Molecular Biology. Wiley, 2002.

#### Дополнительно:

- 1. Gorman, C. M., Moffat, L. F., and Howard, B. H. (1982) Recombmant genomes which express chloramphemcol acetyl transferase m mammalian cells. Mol. Cell. Biol. 2, 1044-1051.
- 2. Sleigh, M. J. (1986) A non-chromatographic assay for expression of the chloramphenicol acetyl transferase gene in eucaryotic cells. Anal. Bzochem. 156,25 l-256.
- 3. Fowler, A. V. and Zabin, I. (1983) Purification, structure and properttes of hybrid p galactosidase proteins. J. Biol. Chem. 258, 14,354-14,358.
- 4. Gormg, D. R., Rossant, J., Clapoff, S., Breitman, M. L., and Tsui, L.-C. (1987) In situ detection of /3 galactosidases m lenses of transgenic mice with a gcrystallm/lacZ gene. Science 235,456-458.
- 5. Shimohama, S., Rosenberg, M. B., Fagan, A. M., Wolff, J. A., Short, M. P., Breakefield, X. O., Friedmann, T., and Gage, F. H. (1989) Grafting genetically modified cells into the rat brain: characteristics of E Co11 p-galactosidase as a reporter gene. Mol. Brain. Res. 5,271-278.
- 6. de Wet, J. R., Wood, K. V., DeLuca, M., Helsinki, D. R., and Subramt, S. (1987) Firefly luctferase gene: Structure and expresston m mammalian cells. Mol. Cell. Blol I, 725-137. 424 Pardy
- 7. Brasier, A. R., Tate, J. E., and Habener, J. F. (1989) Optmuzed use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques 7, 1116-1122.
- 8. Nguyen, V. T., Morange, M., and Bensaude, 0. (1988) Firefly luclferase luminescence assays using scintillation counters for quantitation in transfected mammalian cells. Anal. Biochem. 171,404-408.